CVE Vulnerabilities


Access of Resource Using Incompatible Type ('Type Confusion')

Published: Jan 23, 2024 | Modified: Mar 08, 2024
CVSS 3.x
CVSS 2.x

A type confusion issue was addressed with improved checks. This issue is fixed in iOS 17.3 and iPadOS 17.3, macOS Sonoma 14.3, tvOS 17.3. Processing maliciously crafted web content may lead to arbitrary code execution. Apple is aware of a report that this issue may have been exploited.


The product allocates or initializes a resource such as a pointer, object, or variable using one type, but it later accesses that resource using a type that is incompatible with the original type.

Affected Software

Name Vendor Start Version End Version
Safari Apple * 17.3 (excluding)
Ipados Apple 16.0 (excluding) 16.7.5 (excluding)
Ipados Apple 17.0 (excluding) 17.3 (excluding)
Iphone_os Apple 16.0 (excluding) 16.7.5 (excluding)
Iphone_os Apple 17.0 (excluding) 17.3 (excluding)
Macos Apple 12.0 (including) 12.7.3 (excluding)
Macos Apple 13.0 (including) 13.6.4 (excluding)
Macos Apple 14.0 (including) 14.3 (excluding)
Tvos Apple * 17.3 (excluding)
Visionos Apple * 1.0.2 (excluding)

Extended Description

When the product accesses the resource using an incompatible type, this could trigger logical errors because the resource does not have expected properties. In languages without memory safety, such as C and C++, type confusion can lead to out-of-bounds memory access. While this weakness is frequently associated with unions when parsing data with many different embedded object types in C, it can be present in any application that can interpret the same variable or memory location in multiple ways. This weakness is not unique to C and C++. For example, errors in PHP applications can be triggered by providing array parameters when scalars are expected, or vice versa. Languages such as Perl, which perform automatic conversion of a variable of one type when it is accessed as if it were another type, can also contain these issues.