CVE Vulnerabilities

CVE-2024-35237

Missing Authorization

Published: May 27, 2024 | Modified: May 27, 2024
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

MIT IdentiBot is an open-source Discord bot written in Node.js that verifies individuals affiliations with MIT, grants them roles in a Discord server, and stores information about them in a database backend. A vulnerability that exists prior to commit 48e3e5e7ead6777fa75d57c7711c8e55b501c24e impacts all users who have performed verification with an instance of MIT IdentiBot that meets the following conditions: The instance of IdentiBot is tied to a public Discord application—i.e., users other than the API access registrant can add it to servers; and the instance has not yet been patched. In affected versions, IdentiBot does not check that a server is authorized before allowing members to execute slash and user commands in that server. As a result, any user can join IdentiBot to their server and then use commands (e.g., /kerbid) to reveal the full name and other information about a Discord user who has verified their affiliation with MIT using IdentiBot. The latest version of MIT IdentiBot contains a patch for this vulnerability (implemented in commit 48e3e5e7ead6777fa75d57c7711c8e55b501c24e). There is no way to prevent exploitation of the vulnerability without the patch. To prevent exploitation of the vulnerability, all vulnerable instances of IdentiBot should be taken offline until they have been updated.

Weakness

The product does not perform an authorization check when an actor attempts to access a resource or perform an action.

Extended Description

Assuming a user with a given identity, authorization is the process of determining whether that user can access a given resource, based on the user’s privileges and any permissions or other access-control specifications that apply to the resource. When access control checks are not applied, users are able to access data or perform actions that they should not be allowed to perform. This can lead to a wide range of problems, including information exposures, denial of service, and arbitrary code execution.

Potential Mitigations

  • Divide the product into anonymous, normal, privileged, and administrative areas. Reduce the attack surface by carefully mapping roles with data and functionality. Use role-based access control (RBAC) [REF-229] to enforce the roles at the appropriate boundaries.
  • Note that this approach may not protect against horizontal authorization, i.e., it will not protect a user from attacking others with the same role.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • For example, consider using authorization frameworks such as the JAAS Authorization Framework [REF-233] and the OWASP ESAPI Access Control feature [REF-45].
  • For web applications, make sure that the access control mechanism is enforced correctly at the server side on every page. Users should not be able to access any unauthorized functionality or information by simply requesting direct access to that page.
  • One way to do this is to ensure that all pages containing sensitive information are not cached, and that all such pages restrict access to requests that are accompanied by an active and authenticated session token associated with a user who has the required permissions to access that page.

References