CVE Vulnerabilities

CVE-2024-37300

Incorrect Authorization

Published: Jun 12, 2024 | Modified: Jun 12, 2024
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

OAuthenticator is software that allows OAuth2 identity providers to be plugged in and used with JupyterHub. JupyterHub < 5.0, when used with GlobusOAuthenticator, could be configured to allow all users from a particular institution only. This worked fine prior to JupyterHub 5.0, because allow_all did not take precedence over identity_provider. Since JupyterHub 5.0, allow_all does take precedence over identity_provider. On a hub with the same config, now all users will be allowed to login, regardless of identity_provider. identity_provider will basically be ignored. This is a documented change in JupyterHub 5.0, but is likely to catch many users by surprise. OAuthenticator 16.3.1 fixes the issue with JupyterHub 5.0, and does not affect previous versions. As a workaround, do not upgrade to JupyterHub 5.0 when using GlobusOAuthenticator in the prior configuration.

Weakness

The product performs an authorization check when an actor attempts to access a resource or perform an action, but it does not correctly perform the check. This allows attackers to bypass intended access restrictions.

Extended Description

Assuming a user with a given identity, authorization is the process of determining whether that user can access a given resource, based on the user’s privileges and any permissions or other access-control specifications that apply to the resource. When access control checks are incorrectly applied, users are able to access data or perform actions that they should not be allowed to perform. This can lead to a wide range of problems, including information exposures, denial of service, and arbitrary code execution.

Potential Mitigations

  • Divide the product into anonymous, normal, privileged, and administrative areas. Reduce the attack surface by carefully mapping roles with data and functionality. Use role-based access control (RBAC) [REF-229] to enforce the roles at the appropriate boundaries.
  • Note that this approach may not protect against horizontal authorization, i.e., it will not protect a user from attacking others with the same role.
  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
  • For example, consider using authorization frameworks such as the JAAS Authorization Framework [REF-233] and the OWASP ESAPI Access Control feature [REF-45].
  • For web applications, make sure that the access control mechanism is enforced correctly at the server side on every page. Users should not be able to access any unauthorized functionality or information by simply requesting direct access to that page.
  • One way to do this is to ensure that all pages containing sensitive information are not cached, and that all such pages restrict access to requests that are accompanied by an active and authenticated session token associated with a user who has the required permissions to access that page.

References