CVE Vulnerabilities

CVE-2024-38812

Heap-based Buffer Overflow

Published: Sep 17, 2024 | Modified: Nov 22, 2024
CVSS 3.x
9.8
CRITICAL
Source:
NVD
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

The vCenter Server contains a heap-overflow vulnerability in the implementation of the DCERPC protocol. A malicious actor with network access to vCenter Server may trigger this vulnerability by sending a specially crafted network packet potentially leading to remote code execution.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Affected Software

Name Vendor Start Version End Version
Vcenter_server Vmware 7.0 (including) 7.0 (including)
Vcenter_server Vmware 7.0-update1 (including) 7.0-update1 (including)
Vcenter_server Vmware 7.0-update1a (including) 7.0-update1a (including)
Vcenter_server Vmware 7.0-update1c (including) 7.0-update1c (including)
Vcenter_server Vmware 7.0-update1d (including) 7.0-update1d (including)
Vcenter_server Vmware 7.0-update2 (including) 7.0-update2 (including)
Vcenter_server Vmware 7.0-update2a (including) 7.0-update2a (including)
Vcenter_server Vmware 7.0-update2b (including) 7.0-update2b (including)
Vcenter_server Vmware 7.0-update2c (including) 7.0-update2c (including)
Vcenter_server Vmware 7.0-update2d (including) 7.0-update2d (including)
Vcenter_server Vmware 7.0-update3 (including) 7.0-update3 (including)
Vcenter_server Vmware 7.0-update3a (including) 7.0-update3a (including)
Vcenter_server Vmware 7.0-update3c (including) 7.0-update3c (including)
Vcenter_server Vmware 7.0-update3d (including) 7.0-update3d (including)
Vcenter_server Vmware 7.0-update3e (including) 7.0-update3e (including)
Vcenter_server Vmware 7.0-update3f (including) 7.0-update3f (including)
Vcenter_server Vmware 7.0-update3g (including) 7.0-update3g (including)
Vcenter_server Vmware 7.0-update3h (including) 7.0-update3h (including)
Vcenter_server Vmware 7.0-update3i (including) 7.0-update3i (including)
Vcenter_server Vmware 7.0-update3j (including) 7.0-update3j (including)
Vcenter_server Vmware 7.0-update3k (including) 7.0-update3k (including)
Vcenter_server Vmware 7.0-update3l (including) 7.0-update3l (including)
Vcenter_server Vmware 7.0-update3m (including) 7.0-update3m (including)
Vcenter_server Vmware 7.0-update3n (including) 7.0-update3n (including)

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References