CVE Vulnerabilities

CVE-2025-0373

Stack-based Buffer Overflow

Published: Jan 30, 2025 | Modified: Feb 07, 2025
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

On 64-bit systems, the implementation of VOP_VPTOFH() in the cd9660, tarfs and ext2fs filesystems overflows the destination FID buffer by 4 bytes, a stack buffer overflow.

A NFS server that exports a cd9660, tarfs, or ext2fs file system can be made to panic by mounting and accessing the export with an NFS client. Further exploitation (e.g., bypassing file permission checking or remote kernel code execution) is potentially possible, though this has not been demonstrated. In particular, release kernels are compiled with stack protection enabled, and some instances of the overflow are caught by this mechanism, causing a panic.

Weakness

A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References