CVE Vulnerabilities

CVE-2025-34091

Observable Discrepancy

Published: Jul 02, 2025 | Modified: Jul 03, 2025
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

A padding oracle vulnerability exists in Google Chrome’s AppBound cookie encryption mechanism due to observable decryption failure behavior in Windows Event Logs when handling malformed ciphertext in SYSTEM-DPAPI-encrypted blobs. A local attacker can repeatedly send malformed ciphertexts to the Chrome elevation service and distinguish between padding and MAC errors, enabling a padding oracle attack. This allows partial decryption of the SYSTEM-DPAPI layer and eventual recovery of the user-DPAPI encrypted cookie key, which is trivially decrypted by the attacker’s own context. This issue undermines the core purpose of AppBound Encryption by enabling low-privileged cookie theft through cryptographic misuse and verbose error feedback.

Confirmed in Google Chrome with AppBound Encryption enabled. Other Chromium-based browsers may be affected if they implement similar COM-based encryption mechanisms.

This behavior arises from a combination of Chrome’s AppBound implementation and the way Microsoft Windows DPAPI reports decryption failures via Event Logs. As such, the vulnerability relies on cryptographic behavior and error visibility in all supported versions of Windows.

Weakness

The product behaves differently or sends different responses under different circumstances in a way that is observable to an unauthorized actor, which exposes security-relevant information about the state of the product, such as whether a particular operation was successful or not.

Potential Mitigations

  • Compartmentalize the system to have “safe” areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
  • Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
  • Ensure that error messages only contain minimal details that are useful to the intended audience and no one else. The messages need to strike the balance between being too cryptic (which can confuse users) or being too detailed (which may reveal more than intended). The messages should not reveal the methods that were used to determine the error. Attackers can use detailed information to refine or optimize their original attack, thereby increasing their chances of success.
  • If errors must be captured in some detail, record them in log messages, but consider what could occur if the log messages can be viewed by attackers. Highly sensitive information such as passwords should never be saved to log files.
  • Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a user account exists or not.

References