CVE Vulnerabilities

CVE-2025-34329

Unrestricted Upload of File with Dangerous Type

Published: Nov 19, 2025 | Modified: Nov 19, 2025
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

AudioCodes Fax Server and Auto-Attendant IVR appliances versions up to and including 2.6.23 expose an unauthenticated backup upload endpoint at AudioCodes_files/ajaxBackupUploadFile.php in the F2MAdmin web interface. The script derives a backup folder path from application configuration, creates the directory if it does not exist, and then moves an uploaded file to that location using the attacker-controlled filename, without any authentication, authorization, or file-type validation. On default Windows deployments where the backup directory resolves to the system drive, a remote attacker can upload web server or interpreter configuration files that cause a log file or other server-controlled resource to be treated as executable code. This allows subsequent HTTP requests to trigger arbitrary command execution under the web server account, which runs as NT AUTHORITYSYSTEM.

Weakness

The product allows the upload or transfer of dangerous file types that are automatically processed within its environment.

Potential Mitigations

  • Assume all input is malicious. Use an “accept known good” input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
  • When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, “boat” may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as “red” or “blue.”
  • Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code’s environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
  • For example, limiting filenames to alphanumeric characters can help to restrict the introduction of unintended file extensions.
  • Run the code in a “jail” or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.
  • OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.
  • This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.
  • Be careful to avoid CWE-243 and other weaknesses related to jails.

References