CVE Vulnerabilities

CVE-2025-34502

Missing Immutable Root of Trust in Hardware

Published: Oct 24, 2025 | Modified: Oct 24, 2025
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu

Deck Mate 2 lacks a verified secure-boot chain and runtime integrity validation for its controller and display modules. Without cryptographic boot verification, an attacker with physical access can modify or replace the bootloader, kernel, or filesystem and gain persistent code execution on reboot. This weakness allows long-term firmware tampering that survives power cycles. The vendor indicates that more recent firmware updates strengthen update-chain integrity and disable physical update ports to mitigate related attack avenues.

Weakness

A missing immutable root of trust in the hardware results in the ability to bypass secure boot or execute untrusted or adversarial boot code.

Extended Description

A System-on-Chip (SoC) implements secure boot by verifying or authenticating signed boot code. The signing of the code is achieved by an entity that the SoC trusts. Before executing the boot code, the SoC verifies that the code or the public key with which the code has been signed has not been tampered with. The other data upon which the SoC depends are system-hardware settings in fuses such as whether “Secure Boot is enabled”. These data play a crucial role in establishing a Root of Trust (RoT) to execute secure-boot flows. One of the many ways RoT is achieved is by storing the code and data in memory or fuses. This memory should be immutable, i.e., once the RoT is programmed/provisioned in memory, that memory should be locked and prevented from further programming or writes. If the memory contents (i.e., RoT) are mutable, then an adversary can modify the RoT to execute their choice of code, resulting in a compromised secure boot. Note that, for components like ROM, secure patching/update features should be supported to allow authenticated and authorized updates in the field.

Potential Mitigations

References