In the Linux kernel, the following vulnerability has been resolved:
bpf: Enforce expected_attach_type for tailcall compatibility
Yinhao et al. recently reported:
Our fuzzer tool discovered an uninitialized pointer issue in the bpf_prog_test_run_xdp() function within the Linux kernels BPF subsystem. This leads to a NULL pointer dereference when a BPF program attempts to deference the txq member of struct xdp_buff object.
The test initializes two programs of BPF_PROG_TYPE_XDP: progA acts as the entry point for bpf_prog_test_run_xdp() and its expected_attach_type can neither be of be BPF_XDP_DEVMAP nor BPF_XDP_CPUMAP. progA calls into a slot of a tailcall map it owns. progBs expected_attach_type must be BPF_XDP_DEVMAP to pass xdp_is_valid_access() validation. The program returns struct xdp_mds egress_ifindex, and the latter is only allowed to be accessed under mentioned expected_attach_type. progB is then inserted into the tailcall which progA calls.
The underlying issue goes beyond XDP though. Another example are programs of type BPF_PROG_TYPE_CGROUP_SOCK_ADDR. sock_addr_is_valid_access() as well as sock_addr_func_proto() have different logic depending on the programs expected_attach_type. Similarly, a program attached to BPF_CGROUP_INET4_GETPEERNAME should not be allowed doing a tailcall into a program which calls bpf_bind() out of BPF which is only enabled for BPF_CGROUP_INET4_CONNECT.
In short, specifying expected_attach_type allows to open up additional functionality or restrictions beyond what the basic bpf_prog_type enables. The use of tailcalls must not violate these constraints. Fix it by enforcing expected_attach_type in __bpf_prog_map_compatible().
Note that we only enforce this for tailcall maps, but not for BPF devmaps or cpumaps: There, the programs are invoked through dev_map_bpf_prog_run*() and cpu_map_bpf_prog_run*() which set up a new environment / context and therefore these situations are not prone to this issue.