The function _ux_host_class_storage_media_mount() is responsible for mounting partitions on a USB mass storage device. When it encounters an extended partition entry in the partition table, it recursively calls itself to mount the next logical partition.
This recursion occurs in _ux_host_class_storage_partition_read(), which parses up to four partition entries. If an extended partition is found (with type UX_HOST_CLASS_STORAGE_PARTITION_EXTENDED or EXTENDED_LBA_MAPPED), the code invokes:
_ux_host_class_storage_media_mount(storage, sector + _ux_utility_long_get(…));
There is no limit on the recursion depth or tracking of visited sectors. As a result, a malicious or malformed disk image can include cyclic or excessively deep chains of extended partitions, causing the function to recurse until stack overflow occurs.
Weakness
A stack-based buffer overflow condition is a condition where the buffer being overwritten is allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).
Potential Mitigations
- Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
- D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
- Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
- Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
- For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
References