Starlette is a lightweight ASGI framework/toolkit. Starting in version 0.39.0 and prior to version 0.49.1 , an unauthenticated attacker can send a crafted HTTP Range header that triggers quadratic-time processing in Starlettes FileResponse Range parsing/merging logic. This enables CPU exhaustion per request, causing denial‑of‑service for endpoints serving files (e.g., StaticFiles or any use of FileResponse). This vulnerability is fixed in 0.49.1.
An algorithm in a product has an inefficient worst-case computational complexity that may be detrimental to system performance and can be triggered by an attacker, typically using crafted manipulations that ensure that the worst case is being reached.
| Name | Vendor | Start Version | End Version |
|---|---|---|---|
| Red Hat AI Inference Server 3.2 | RedHat | rhaiis/vllm-cuda-rhel9:sha256:ec961e5acfde5c1ad0a7e0e2c86a0bf56b9bc46357fa124f9db6dff1006076ab | * |
| Red Hat AI Inference Server 3.2 | RedHat | rhaiis/vllm-rocm-rhel9:sha256:7856bdb7ae0d643a7b9362c164d4d4fe3c0c7186f5fff73a7ae9835b3df52e57 | * |
| Red Hat AI Inference Server 3.2 | RedHat | rhaiis/model-opt-cuda-rhel9:sha256:dce6b0ea03379bf06664a5200af8b5f5ae3fad13cdce6d21873843f22554800b | * |
| Red Hat Ansible Automation Platform 2.5 | RedHat | ansible-automation-platform-25/lightspeed-chatbot-rhel8:sha256:b46385b4a5063dd766ccffd94c27579499376179a0bae07711f404893c7b6f26 | * |
| Red Hat Ansible Automation Platform 2.6 | RedHat | ansible-automation-platform-26/lightspeed-chatbot-rhel9:sha256:2b475b22f6cad9b4036c8b19a9348187525676a7cde234cff0eecd706fb1d499 | * |
| Red Hat Ansible Automation Platform 2.6 | RedHat | ansible-automation-platform-26/mcp-tools-rhel9:sha256:3a30608afcfd2940521cd6788d09d279ea794c398b643ac142092f68f05596ef | * |
| Red Hat OpenShift AI 2.22 | RedHat | rhoai/odh-feature-server-rhel9:sha256:d5d52b368050d505183452f1d8b5170c86f7473fd869a886777d3bf7e48aad76 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-built-in-detector-rhel9:sha256:030379c0fb216de4f871c3fb09ab5acc4996f0be1da03fdb1b1726bb60a31554 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-caikit-nlp-rhel9:sha256:853f7b134c4260b6fb62761dc2548056e0a64f723e6a516aa171ed9bad21266f | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-caikit-tgis-serving-rhel9:sha256:4be08cd9e572420854f3a5cf30884219385821737ec7d867db85ac58bf952093 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-feature-server-rhel9:sha256:97ff0fe1d0c932e2de0efbcfa948f2e7dd4e2098fc5cd85422eeb3515d768d47 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-guardrails-detector-huggingface-runtime-rhel9:sha256:1ae90d6e88a41233bc1ee296f9e74e72701453a73ea00cb45f12ea239e96b859 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-kserve-agent-rhel9:sha256:7caa5349317343219fa6a504ff80b04904df78adbc60b34a3b1951e072db513a | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-kserve-controller-rhel9:sha256:4bbfad1a5fde624a13c3edd27962e5b8bf7782ea4cd5f64b3a996d308e3be365 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-kserve-router-rhel9:sha256:974dd5577124715f30df61d06aba22d95bc5f02103ab1b518eb517ed09284740 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-kserve-storage-initializer-rhel9:sha256:e9a1cdebc0511256b293f04741e81461d8113ef4cc891a9d85683aa862baaf7a | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-llama-stack-core-rhel9:sha256:4c1a2927b28a0b1321cb4e5a6f4259e504d08fb9d6cc88f5f26e6182096ba817 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-pipeline-runtime-datascience-cpu-py312-rhel9:sha256:d99b05c3c886785d07aeb596e6aa67140789cf9c76f29aa837bbbebde35ad503 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-pipeline-runtime-pytorch-cuda-py312-rhel9:sha256:f5373ddca575dc4bdb3ebd6910b0665f0a8c3c38454b4d0268c6a97e6f0ec81c | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-pipeline-runtime-pytorch-llmcompressor-cuda-py312-rhel9:sha256:fa5bd655d75de3ca930e8c6d79a29a53c35d1ee2a0bb03172068505646b65e13 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-pipeline-runtime-pytorch-rocm-py312-rhel9:sha256:e621898c4dc4f07ad89d4eadd23c5732bc60cf6f42c8e3fd312463b232fc7740 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-pipeline-runtime-tensorflow-cuda-py312-rhel9:sha256:229f2f2ee3b7e63bf17bf6739f3ee69fc87d9070ace1edec5d766f758e04ade1 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-pipeline-runtime-tensorflow-rocm-py312-rhel9:sha256:2f49b2e93ebc766c86404027e25bc433c4a093494c02f18b7c038bda85525cf0 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-vllm-cpu-rhel9:sha256:1cb87f9f25e7c216b86650f4f0d9e23e82771380b1222732256bba45bd4b132a | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-vllm-cuda-rhel9:sha256:ec8d37a58ea9117a493658bd4725e4bebbd62979b5082489747ea6ebb741d76a | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-vllm-gaudi-rhel9:sha256:2885ea112d2dfa84a2f071b498ff56f16fe5dd1d8bb80eb2fe68ff9691e3fe60 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-vllm-rocm-rhel9:sha256:8fbdbf70f34250f36868c8a3b5dabe090218b081c38c1290d7f0e515078e16d2 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-workbench-codeserver-datascience-cpu-py312-rhel9:sha256:5e8102bf7cc4a98f0f4c0486884f00cddc8bb52e09186fcdf9861a27d65e5121 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-workbench-jupyter-datascience-cpu-py312-rhel9:sha256:1f3492cbf44d4004f3437a8bfc7dc95719041d58f65926a538085d7433b4aa5d | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-workbench-jupyter-pytorch-cuda-py312-rhel9:sha256:af5beb652ee1f816bd0acac5b98866cb2ed45df4726bb8fe414f5f14f67cfe5e | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-workbench-jupyter-pytorch-llmcompressor-cuda-py312-rhel9:sha256:4e72a3976189c1b75260e6926eed40b1817ebbbd6f990e63874ac1452d9cb8c1 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-workbench-jupyter-pytorch-rocm-py312-rhel9:sha256:346a4fdde7d4c3d3afba71760edf44730745eb8fde86ec6476a668cea607e7ba | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-workbench-jupyter-tensorflow-cuda-py312-rhel9:sha256:227ef502cc266d18541445091e618df4c25430e50698ab02c519f32bef38b0b1 | * |
| Red Hat OpenShift AI 2.25 | RedHat | rhoai/odh-workbench-jupyter-tensorflow-rocm-py312-rhel9:sha256:1ecfb6fd3f5f223ff60e90e9ed45d393447f95de6b91451c1614bc69e042ec95 | * |
| Starlette | Ubuntu | plucky | * |