CVE Vulnerabilities

CVE-2026-22816

Download of Code Without Integrity Check

Published: Jan 16, 2026 | Modified: Feb 18, 2026
CVSS 3.x
7.4
HIGH
Source:
NVD
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu
MEDIUM
root.io logo minimus.io logo echo.ai logo

Gradle is a build automation tool, and its native-platform tool provides Java bindings for native APIs. When resolving dependencies in versions before 9.3.0, some exceptions were not treated as fatal errors and would not cause a repository to be disabled. If a build encountered one of these exceptions, Gradle would continue to the next repository in the list and potentially resolve dependencies from a different repository. If a Gradle build used an unresolvable host name, Gradle would continue to work as long as all dependencies could be resolved from another repository. An unresolvable host name could be caused by allowing a repositorys domain name registration to lapse or typo-ing the real domain name. This behavior could allow an attacker to register a service under the host name used by the build and serve malicious artifacts. The attack requires the repository to be listed before others in the build configuration. Gradle has introduced a change in behavior in Gradle 9.3.0 to stop searching other repositories when encountering these errors.

Weakness

The product downloads source code or an executable from a remote location and executes the code without sufficiently verifying the origin and integrity of the code.

Affected Software

NameVendorStart VersionEnd Version
GradleGradle*8.14.4 (excluding)
GradleGradle9.0.0 (including)9.3.0 (excluding)

Potential Mitigations

  • Encrypt the code with a reliable encryption scheme before transmitting.

  • This will only be a partial solution, since it will not detect DNS spoofing and it will not prevent your code from being modified on the hosting site.

  • Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid [REF-1482].

  • Speficially, it may be helpful to use tools or frameworks to perform integrity checking on the transmitted code.

  • Run the code in a “jail” or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or which commands can be executed by the software.

  • OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to specify restrictions on file operations.

  • This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.

  • Be careful to avoid CWE-243 and other weaknesses related to jails.

References