ESPHome is a system to control microcontrollers remotely through Home Automation systems. In versions 2025.9.0 through 2025.12.6, an integer overflow in the API components protobuf decoder allows denial-of-service attacks when API encryption is not used. The bounds check ptr + field_length > end in components/api/proto.cpp can overflow when a malicious client sends a large field_length value. This affects all ESPHome device platforms (ESP32, ESP8266, RP2040, LibreTiny). The overflow bypasses the out-of-bounds check, causing the device to read invalid memory and crash. When using the plaintext API protocol, this attack can be performed without authentication. When noise encryption is enabled, knowledge of the encryption key is required. Users should upgrade to ESPHome 2025.12.7 or later to receive a patch, enable API encryption with a unique key per device, and follow the Security Best Practices.
Weakness
The product performs a calculation that can
produce an integer overflow or wraparound when the logic
assumes that the resulting value will always be larger than
the original value. This occurs when an integer value is
incremented to a value that is too large to store in the
associated representation. When this occurs, the value may
become a very small or negative number.
Potential Mitigations
- Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
- If possible, choose a language or compiler that performs automatic bounds checking.
- Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid [REF-1482].
- Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
- Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
- Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
- Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
- Understand the programming language’s underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, “not-a-number” calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
- Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.
References