CVE Vulnerabilities

CVE-2026-24040

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Published: Feb 02, 2026 | Modified: Feb 18, 2026
CVSS 3.x
4.8
MEDIUM
Source:
NVD
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N
CVSS 2.x
RedHat/V2
RedHat/V3
7.5 MODERATE
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:L/A:N
Ubuntu
root.io logo minimus.io logo echo.ai logo

jsPDF is a library to generate PDFs in JavaScript. Prior to 4.1.0, the addJS method in the jspdf Node.js build utilizes a shared module-scoped variable (text) to store JavaScript content. When used in a concurrent environment (e.g., a Node.js web server), this variable is shared across all requests. If multiple requests generate PDFs simultaneously, the JavaScript content intended for one user may be overwritten by a subsequent request before the document is generated. This results in Cross-User Data Leakage, where the PDF generated for User A contains the JavaScript payload (and any embedded sensitive data) intended for User B. Typically, this only affects server-side environments, although the same race conditions might occur if jsPDF runs client-side. The vulnerability has been fixed in jsPDF@4.1.0.

Weakness

The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.

Affected Software

NameVendorStart VersionEnd Version
JspdfParall*4.1.0 (excluding)

Extended Description

A race condition occurs within concurrent environments, and it is effectively a property of a code sequence. Depending on the context, a code sequence may be in the form of a function call, a small number of instructions, a series of program invocations, etc. A race condition violates these properties, which are closely related:

A race condition exists when an “interfering code sequence” can still access the shared resource, violating exclusivity. The interfering code sequence could be “trusted” or “untrusted.” A trusted interfering code sequence occurs within the product; it cannot be modified by the attacker, and it can only be invoked indirectly. An untrusted interfering code sequence can be authored directly by the attacker, and typically it is external to the vulnerable product.

Potential Mitigations

  • Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
  • Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).

References