CVE Vulnerabilities

CVE-2026-2474

Heap-based Buffer Overflow

Published: Feb 16, 2026 | Modified: Feb 16, 2026
CVSS 3.x
N/A
Source:
NVD
CVSS 2.x
RedHat/V2
RedHat/V3
Ubuntu
root.io logo minimus.io logo echo.ai logo

Crypt::URandom versions from 0.41 before 0.55 for Perl is vulnerable to a heap buffer overflow in the XS function crypt_urandom_getrandom().

The function does not validate that the length parameter is non-negative. If a negative value (e.g. -1) is supplied, the expression length + 1u causes an integer wraparound, resulting in a zero-byte allocation. The subsequent call to getrandom(data, length, GRND_NONBLOCK) passes the original negative value, which is implicitly converted to a large unsigned value (typically SIZE_MAX). This can result in writes beyond the allocated buffer, leading to heap memory corruption and application crash (denial of service).

In common usage, the length argument is typically hardcoded by the caller, which reduces the likelihood of attacker-controlled exploitation. Applications that pass untrusted input to this parameter may be affected.

Weakness

A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is allocated in the heap portion of memory, generally meaning that the buffer was allocated using a routine such as malloc().

Potential Mitigations

  • Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
  • D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
  • Run or compile the software using features or extensions that randomly arrange the positions of a program’s executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
  • Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as “rebasing” (for Windows) and “prelinking” (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
  • For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].

References